Simplification of Morse Decompositions Using Morse Set Mergers
نویسندگان
چکیده
A common problem of vector field topology algorithms is the large number of the resulting topological features. This paper describes a method to simplify Morse decompositions by iteratively merging pairs of Morse sets that are adjacent in the Morse Connection Graph (MCG). When Morse sets A and B are merged, they are replaced by a single Morse set, that can be thought of as the union of A, B and all trajectories connecting A and B. Pairs of Morse sets to be merged can be picked based on a variety of criteria. For example, one can allow only pairs whose merger results in a topologically simple Morse set to be selected, and give preference to mergers leading to small Morse sets.
منابع مشابه
Szymczak: Hierarchy of Stable Morse Decompositions
We introduce an algorithm for construction of the Morse hierarchy, i.e. a hierarchy of Morse decompositions of a piecewise constant vector field on a surface driven by stability of the Morse sets with respect to perturbation of the vector field. Our approach builds upon earlier work on stable Morse decompositions, which can be used to obtain Morse sets of user-prescribed stability. More stable ...
متن کاملA New Modification of Morse Potential Energy Function
Interaction of meso — tetrakis (p-sulphonato phenyl) porphyrin (hereafter abbreviated to TSPP)with Na+ has been examined using HF level of theory with 6-31G* basis set. Counterpoise (CP)correction has been used to show the extent of the basis set superposition error (BSSE) on thepotential energy curves. The numbers of Na+ have a significant effect on the calculated potentialenergy curve (includ...
متن کاملThe Connection Matrix Theory for Morse Decompositions
The connection matrix theory for Morse decompositions is introduced. The connection matrices are matrices of maps between the homology indices of the sets in the Morse decomposition. The connection matrices cover, in a natural way, the homology index braid of the Morse decomposition and provide information about the structure of the Morse decomposition. The existence of connection matrices of M...
متن کاملSensor-based Coverage of Unknown Environments: Incremental Construction of Morse Decompositions
The goal of coverage path planning is to determine a path that passes a detector over all points in an environment. This work prescribes a provably complete coverage path planner for robots in unknown spaces. We achieve coverage using Morse decompositions which are exact cellular decompositions whose cells are defined in terms of critical points of Morse functions. Generically, two critical poi...
متن کاملMorse Inequalities and Zeta Functions
Morse inequalities for diffeomorphisms of a compact manifold were first proved by Smale [21] under the assumption that the nonwandering set is finite. We call these the integral Morse inequalities. They were generalized by Zeeman in an unpublished work cited in [25] to diffeomorphisms with a hyperbolic chain recurrent set that is axiom-A-diffeomorphisms which satisfy the no cycle condition. For...
متن کامل